AVERAGING OF TRANSPORT EQUATIONS WITH RESPECT TO ANGLES

IN THE TWO-DIMENSIONAL CASE

PMM Vol.37, №2, 1973, pp. 355-358
T. B. MALIAVINA
(Moscow)
(Received March 2, 1972)

A method is proposed for solving problems of unsteady gasdynamics with radiation heat exchange taken into consideration, which do not require the use of angular distribution for each interval of time. The system of radiation transport equations averaged with respect to angles is derived for the case of cylindrical symmetry. This system is equivalent to the basic system of transport equations, in that it yields the same density for the radiation stream at the instant of aver-
 aging as the latter. Similar one-dimensional problems were considered in [1-4]. Solution of unsteady gasdynamic problems with allowance for radiation heat exchange involves a considerable amount of calculations because the transport equation which defines the radiation field has to be formulated for spectral intensity propagating in a determined direction is defined by two angles. At the same time, the equations of gasdynamics contain only the integral characteristic of the radiation field, namely, the radiation stream density.

Averaged equations are derived below for the case in which parameters of the substance are constant at cylindrical surfaces with a common axis of symmetry.

In the case of cylindrical symmetry, neglecting dissipation and the time of radiation propagation over a heated and cooled volume, the equation of radiation transport is of the form

$$
\begin{equation*}
\sin \theta \cos \varphi \frac{\partial I}{\partial r}-\frac{1}{r} \frac{\partial I}{\partial \varphi} \sin \theta \sin \varphi+\frac{\partial I}{\partial z} \cos \theta=-K(I-B) \tag{1}
\end{equation*}
$$

where r, z and ψ are cylindrical coordinates of point M (Fig.1), θ is the angle between ray $M_{0} M$ and the z-axis, φ is the angle between the projection of ray $M_{0} M$ and that of the position vector of point M on the plane $z=0, M_{0}$ is the intersection point of a ray with the plane $z=0, I$ is the radiation intensity multiplied by x and related to a unit region of quantum energy ε, K is the linear spectral absorption coefficient corrected for forced emission, and B is the Plank function.

The averaged equations of the stream radiation density \mathbf{q} are

$$
\begin{equation*}
\mathbf{q}=\int_{\Omega} \mathbf{I} d \Omega, \quad \mathbf{q}=\left\{q_{r}, q_{z}, 0\right\} \tag{2}
\end{equation*}
$$

where Ω is a sphere of unit radius with its center at point $M(r, z, \psi)$, the direction of $\mathbf{I}(r, z, \varphi, \theta)$ is defined by (φ, θ), and $|\mathbf{I}(r, z, \varphi, \theta)|=I(r, z, \varphi, \theta)$.

For the sake of simplicity let us consider the problem for a straight cylinder in which function I is determined in region

$$
G=\left\{r \in\left(0, r_{0}\right), z \in\left(0, z_{0}\right), \varphi \in(0,2 \pi), \theta \in(0, \pi)\right\}
$$

where r_{0} and z_{0} are dimensions of the cylinder (Fig. 1).
First, let us examine q_{r}. We divide q_{r} into $q_{r}{ }^{+}$and $q_{r}{ }^{-}$

$$
\begin{gathered}
q_{r}=q_{r}^{+}+q_{r^{-}}, \quad q_{r}^{+}=\int_{\sigma \pm} I \sin \theta \cos \varphi d \Omega \\
\sigma^{+}=\{\theta \in(0, \pi), \varphi \in(-\pi / 2, \pi / 2)\}, \sigma^{-}=\{\theta \in(0, \pi), \varphi \in(\pi / 2,3 / 2 \pi)\}
\end{gathered}
$$

We introduce in G the function $\psi_{r}^{ \pm}=I / q_{r}^{ \pm}$, where $q_{r}{ }^{\ddagger}$ is determined in region $D=\left\{r \in\left(0, r_{0}\right), \quad z \in\left(0, z_{0}\right)\right\}$. Substituting $I=q_{r}{ }^{ \pm} \psi_{r} \pm$ into (1) and integrating over the hemispheres $\sigma^{ \pm}$, we obtain two equations of the hyperbolic kind

$$
\begin{equation*}
\partial q_{r^{-}}^{+} / \partial r+c_{12}^{+} \partial q_{r}^{+} / \partial z+c_{1}^{+} q_{r}^{+-}=2 \pi B \tag{3}
\end{equation*}
$$

where

$$
c_{12}^{+}=\int_{\sigma \pm} \psi_{r}^{+} \cos \theta d \Omega, \quad c_{1}^{+}=\frac{\partial c_{12}^{+}}{\partial z}-\frac{1}{r} \int_{\sigma^{+}}^{\infty} \frac{\partial \psi_{r}^{+}}{\partial \varphi} \sin \theta \sin \varphi d \Omega+K \int_{\sigma \pm}^{+} \psi_{r}^{+} d \Omega
$$

The equations of characteristics are

$$
\begin{equation*}
d z^{ \pm} / d r=c_{12} \pm \tag{4}
\end{equation*}
$$

and the boundary conditions are

$$
\begin{equation*}
q_{r}^{-}\left(r_{0}, z\right)=0, q_{r^{+}}(0, z)=-q_{r}^{-}(0, z) \tag{5}
\end{equation*}
$$

Thus the subdivision of q_{r} into q_{r}^{+}and q_{r}^{-}has made it possible to obtain a system of two independent equations for $q_{r} \ddagger$ and their boundary conditions.

System (3) is determined in D and the boundary conditions (5) are specified at Γ (the part $r=r_{0}, r=0$ of the boundary D). Let us prove that system (3) with boundary conditions (5) can be further defined and solved in $D \bigcup \Gamma$. To do this we shall, first, prove the following statements.

1. A solution of Eq. (4) with initial conditions

$$
\begin{equation*}
\left.z(r)\right|_{r=r_{0}}=z_{*}, z_{*} \in\left[\delta, z_{0}-\delta\right](\delta>0) \tag{6}
\end{equation*}
$$

exists and is unique.
2. The solution of Eq. (4) with initial conditions (6) fills the entire region D.
3. A solution of equation

$$
\begin{equation*}
d q_{r}^{+} / d r=f^{ \pm}\left(q_{r}^{ \pm}, r\right), f^{ \pm}=-c_{1}^{\dagger}\left(r, z^{ \pm}(r)\right) q_{r}^{ \pm}+2 \pi B \tag{7}
\end{equation*}
$$

with boundary conditions

$$
\begin{equation*}
\left.q_{r}^{-}\right|_{r=r_{0}}=0,\left.\quad q_{r}^{+-1}\right|_{r=0}=-\left.q_{r}^{-}\right|_{r=0} \tag{8}
\end{equation*}
$$

exists and is unique.
Let us prove statements $1-3$ for a uniformly heated cylinder in the absence of external radiation sources. In this case

$$
\begin{gather*}
I(S)=B\left(1-e^{-K s}\right) \\
\lim _{r \rightarrow r_{0}} c_{12}^{-}=0, \quad \lim _{r \rightarrow 0} c_{12}^{+}=-\lim _{r \rightarrow 0} c_{12}<\infty \\
\left|\partial_{c_{12}^{-}}^{-} \partial z\right| \leqslant \operatorname{const}\left(r_{0}-r\right)^{-1 / 2} \text { в } d_{0} \tag{9}\\
d_{0}=\left\{z \in\left[\delta, z_{0}-\delta\right], r \cong\left[r_{0}-\delta_{0}, r_{0}\right)\right\} \delta>0, \delta_{0}>0
\end{gather*}
$$

where s is the distance between M and M_{0} (Fig. 1). The continuity of $c_{12} \pm$ and $\partial c_{12} \pm / \partial z$ in D, and the properties of (9) imply that the conditions of existence and uniqueness of (4) are satisfied [5].

The validity of Statement 2 follows from certain simple topological considerations and from the following properties of $c_{12}{ }^{ \pm}$:

$$
\begin{gathered}
\mp c_{12}^{+} \geqslant 0, \quad c_{12}^{+}\left(r, z_{0} / 2-z\right)=-c_{12}^{+}\left(r, z+z_{0} / 2\right) \\
\left|\lim _{r \rightarrow 0} c_{12}^{-}\right|<\infty\left|c_{12}^{+}\right|_{r=r_{0}}<\infty, \quad z \in\left[0, z_{0} / 2\right] \\
\left.c_{12}^{+}\right|_{r=0}=-c_{12}^{-}| |_{r=0}, \quad \lim _{r \rightarrow r_{0}} \overline{c_{12}^{-}}=0
\end{gathered}
$$

The validity of Statement 3 follows from the continuity of $c_{1}{ }^{ \pm}$in $D \quad[5]$ and the following properties of $c_{1} \pm$: $\quad\left|c_{1}^{-}\right| \leqslant$const $\left(r_{0}-r\right)^{-1 / 2}$ в d_{0}

$$
\left|\lim _{r \rightarrow 0} c_{1}{ }^{+}\right|<\infty, \quad \lim _{r \rightarrow r_{0}}\left(c_{1}^{-} q_{r}^{-}\right)=0
$$

Applying to q_{z} all operations carried out on q_{r}, we obtain for $q_{z} \pm$ the equations

$$
\begin{equation*}
c_{2 i}^{+} \partial q_{z}^{+} / \partial r+\partial q_{z}^{+} / \partial z+c_{2}^{+} q_{z}^{+}=2 \pi B \tag{10}
\end{equation*}
$$

where

$$
\begin{gathered}
c_{21}^{+}=\int_{\Delta^{ \pm}} \psi_{z}^{ \pm} \sin \theta \cos \varphi d \Omega \\
c_{2}^{+}=\frac{\partial c_{21}^{+}}{\partial r}-\frac{1}{r} \int_{\Delta^{ \pm}} \frac{\partial \psi_{z}^{+}}{\partial \varphi} \sin \theta \sin \varphi d \Omega+K \int_{\Delta \pm} \psi_{z}^{-\perp} d \Omega \\
g_{z}^{+} \int_{\Delta^{+}} I \cos d \Omega \\
\Delta^{+}=\{\theta \in(0, \pi / 2), \varphi \in(0,2 \pi)\}, \Delta^{-}=\{\theta \in(\pi / 2, \pi), \varphi \in(0,2 \pi)\}
\end{gathered}
$$

Characteristic directions are defined by the equations

$$
\begin{equation*}
d r^{ \pm} / d r=c_{12} \pm \tag{11}
\end{equation*}
$$

with boundary conditions

$$
\begin{equation*}
\left.q_{z}^{+}\right|_{z=0}=\left.q_{z}^{-}\right|_{z=-z_{0}}=0 \tag{12}
\end{equation*}
$$

System (10) with boundary conditions (12) is, similarly to problem (3), (5), solvable in D. We call the process of determination of coefficients $c_{i, j}$ and $c_{i}(i, j==1,2)$ "averaging". If K and B are not constant but fairly smooth, Statements $1-3$ are valid in the absence of external radiation sources.

Having thus solved the transport equation (1) for all points (r, z) and in all directions inside the cylinder, we can determine coefficients $c_{i j}$ and c_{i} in Eqs. (3) and (10) and then, using these, determine $q_{r}{ }^{\dagger}$ and $q_{z} \pm$ independently of transport equations. On the assumption that $c_{i j}$ anc c_{i} vary only slightly with the variation of K and B (with time or in various versions of the stationary problem) it is possible to consider these, within
certain limits, as constant at every point and calculate $q_{r}{ }^{ \pm}$and $q_{z} \pm$ by (3) and (10) for
 by the averaged equations of transport into the energy equation which is solved together with other equations of gasdynamics, we can determine the temperature and density at subsequent instants of time and, using the latter, calculate K and B. Then, solving again (1), calculate $c_{i j}$ and c_{i} and recalculate $q_{r}{ }^{ \pm}$and $q_{z}{ }^{ \pm}$by (3) and (10) with certain mean coefficients $c_{i j}{ }^{*}$ and $c_{i}{ }^{*}$ (mean of $c_{i j}$ and c_{i} at two consecutive instants of averaging).

Fig. 2

Fig. 3

The direction fields for (4) and (11) are shown in Figs. 2-4 in the case of a uniformly heated cylinder ($K=1, r_{0}=z_{0}=1$). Figs. 2, 3 and 4 show directions related to fields $c_{12}{ }^{+}, c_{12}{ }^{-}$and $c_{21}{ }^{+}$, respectively. Since $c_{12}{ }^{+}$is symmetric about the straight line $z-z_{0} / 2$, only regions of $z \leqslant z_{0} / 2$ are shown in Figs. 2 and 3 and, owing to the validity of the relationship $c_{21}{ }^{+}(r, z)=-c_{21}^{-}\left(r, z_{11}-z\right)$ only $c_{21}{ }^{+}$is shown in Fig. 4.

Taking into account the form of coefficients $c_{i j}$

$$
\begin{equation*}
c_{i j}=\int_{\Omega_{i}}^{2} I g_{i j} d \Omega / \int_{\Omega_{i}} I f_{i j} d \Omega \tag{13}
\end{equation*}
$$

where Ω_{i} is the related hemisphere and $g_{i j}$ and $f_{i j}$ are functions of φ and θ, we find

Fig. 4 that inside the cylinder, with the eexception of points at distance $\sim 1 / r_{0}$, and $1 / z_{0}$ (from the cylinder end-face and wall, respectively),

$$
\begin{align*}
& \quad c_{i j} \approx \int_{\Omega_{i}} g_{i j} d \Omega / \int_{\Omega_{i}} f_{i j} \mu \Omega \\
& \text { for } k r_{n} \geqslant 1, \quad K z_{j} \geqslant 1 \tag{11}\\
& c_{i j} \approx \int_{\Omega_{i}} s q_{i j} d \Omega / \int_{\Omega_{i}} s j_{i j} d \Omega \\
& \text { for } K r_{n} \ll 1, \quad K z_{1} \ll 1 \tag{15}
\end{align*}
$$

Formula (14) shows that the field of directions remains virtually unchanged in each case. Substituting explicit expressions of functions $g_{i j}$ and $\dot{f}_{i j}$ into (14), we find that for optically thick spaces inside the cylinder, except at its edges, $c_{i} \approx 0$ and $i \neq j$

Calculations carried out for various values of k show a "weak" dependence of the
direction field on the optical thickness of space, hence it is possible to expect that averaging can be made also by frequencies, i. e. to obtain, as in [4], averaged equations for the integral density of the radiation stream.

The direction fields derived here for a cylinder of particular dimensions can be used for cylinders of other dimensions, provided that the following conditions:

$$
\begin{gather*}
B^{*}(r, z)=B(r \beta, z \beta), K^{*}(r, z)=\beta K(r \beta, r \beta) \\
\beta=z_{0} / z_{*}-r_{0} / r_{*} \tag{16}
\end{gather*}
$$

are satisfied. In these formulas B^{*} and K^{*} relate to a cylinder of radius r_{*} and hight z_{*}, and B and K to a cylinder of radius r_{θ} and height z_{0}. If conditions (16) are satisfied, then it is possible to show with the use of (1) and (13) that the relationship

$$
c_{i j}^{*}(r, z)=c_{i j}(r \beta, z \beta)
$$

is satisfied.
The author thanks I. V. Nemchinov for assigning the subject of this investigation and discussing its results.

BIBLIOGRAPHY

1. Gol'din.V.Ia., The quasi-diffusion method of solving kinetic equation. J. USSR Comput. Math. and Math. Phys., Pergamon Press, Vol, 4, N6, 1964.
2. Gol'din, V.Ia., Danilova, G.V. and Chetvertushkin, B. N. . Approximate method of calculating unsteady kinetic equation. Collection: Computational Methods in the Theory of Transport, (pp. 50-58), Atomizdat, Moscow, 1969.
3. Germogenova, T.A. and Sushkevich, T.A., Solution of the transport equation by the method of mean fluxes. Collection: Physical Problems of Reactor Shielding, N23. (pp. 34-35), Atomizdat, Moscow, 1969.
4. Nemchinov.I.V., Averaged equations of radiation transfer and their utilization in the solution of gasdynamic problems. PMM Vol. 34, №4, 1970.
5. Petrovskii, I. G., Course of the Theory of Ordinary Differential Equations. (In Russian), 5-th ed., "Nauka", Moscow, 1964.
